Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage

by Peipei Zuo, Yuanyuan Li, Anqi Wang, Rui Tan, Yahua Liu, Xian Liang, Fangmeng Sheng, Gonggeng Tang, Liang Ge, Liang Wu, Qilei Song, Neil B McKeown, Zhengjin Yang, Tongwen Xu
Year: 2020 DOI: https://doi.org/10.1002/anie.202000012

Extra Information

Published in Angewandte Chemie International Edition

Abstract

Membranes which allow fast and selective transport of protons and cations are required for a wide range of electrochemical energy conversion and storage devices, such as proton-exchange membrane (PEM) fuel cells (PEMFCs) and redox flow batteries (RFBs). Herein we report a new approach to designing solution-processable ion-selective polymer membranes with both intrinsic microporosity and ion-conductive functionality. Polymers are synthesized with rigid and contorted backbones, which incorporate hydrophobic fluorinated and hydrophilic sulfonic acid functional groups, to produce membranes with negatively charged subnanometer-sized confined ionic channels. The ready transport of protons and cations through these membranes, and the high selectivity towards nanometer-sized redox-active molecules, enable efficient and stable operation of an aqueous alkaline quinone redox flow battery and a hydrogen PEM fuel cell.